Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions.
نویسندگان
چکیده
Human polymorphic N-acetyltransferase (NAT2) catalyzes the N-acetylation of arylamine carcinogens and the metabolic activation of N-hydroxyarylamine and N-hydroxyarylamide carcinogens by O- and N,O-acetylation, respectively. Rapid and slow acetylator phenotype is regulated at the NAT2 locus, and each has been associated with differential risk to certain cancers relating to carcinogenic arylamine exposures. We examined arylamine N-acetylation, N-hydroxyarylamine O-acetylation, and N-hydroxyarylamide N,O-acetylation catalytic activities of 16 different recombinant human NAT2 alleles expressed in an Escherichia coli JM105 expression system. NAT2 alleles contained nucleic acid substitutions at G191A (Arg64-->Gln), C282T (silent), T341C (Ile114-->Thr), C481T (silent), G590A (Arg197-->Gln), A803G (Lys268-->Arg), G857A (Gly286-->Glu), and various combinations of substitutions in the 870-bp NAT2-coding region. Expression of each NAT2 allele produced equivalent amounts of immunoreactive recombinant NAT2 protein with differential levels of N-, O-, and N,O-acetylation activity. Catalytic activities of each of the recombinant human NAT2 allozymes followed the relative order N-acetylation > O-acetylation > N,O-acetylation. Catalytic activation rates for the metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-4-aminobiphenyl by O-acetylation and N-hydroxy-2-acetylaminofluorene by N,O-acetylation showed very strong correlations to the N-acetylation of 2-aminofluorene. NAT2 alleles with nucleic acid substitution T341C (NAT2*5A,*5B,*5C) expressed recombinant NAT2 allozymes, with the greatest reductions in metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by O- and N,O-acetylation, respectively. NAT2 alleles with nucleic acid substitutions G191A (NAT2*14A,*14B) and G590A (NAT2*6A,*6B) expressed recombinant NAT2 allozymes with more moderate reductions. NAT2 alleles with nucleic acid substitution G857A (NAT2*7A,*7B) expressed recombinant NAT2 allozymes with the smallest but yet significant reductions. NAT2 alleles with nucleic acid substitutions C282T (silent), C481T (silent), and A803G (Lys268-->Arg) expressed recombinant NAT2 allozymes that did not have significant reductions in the metabolic activations of N-hydroxyarylamines and N-hydroxyarylamides. The differential capacity for the metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by recombinant human NAT2 allozymes encoded by polymorphic NAT2 alleles supports the hypothesis that acetylator phenotype may predispose to cancers related to activation of N-hydroxy-arylamine and N-hydroxyarylamide carcinogens.
منابع مشابه
Codominant expression of N-acetylation and O-acetylation activities catalyzed by N-acetyltransferase 2 in human hepatocytes.
Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) ...
متن کاملMolecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis.
Aromatic and heterocyclic amines require metabolic activation to electrophilic intermediates that initiate carcinogenesis. N-Acetyltransferase 1 (NAT1) and 2 (NAT2) are important enzymes in the biotransformation of these carcinogens and exhibit genetic polymorphism. Human NAT1 and NAT2 alleles are listed at: http://www.louisville.edu/medschool/pharmacology/NAT.html by an international gene nome...
متن کاملN-Acetyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women.
Heterocyclic amines found in well-done meat require host-mediated metabolic activation before initiating DNA mutations and tumors in target organs. Polymorphic N-acetyltransferase-2 (NAT2) catalyzes the activation of heterocyclic amines via O-acetylation, suggesting that NAT2 genotypes with high O-acetyltransferase activity (rapid/intermediate acetylator phenotype) increase the risk of breast c...
متن کاملN-acetyltransferase expression and metabolic activation of the food-derived heterocyclic amines in the human mammary gland.
The heterocyclic amines (HCAs) found in cooked meat are procarcinogens that are metabolically activated by N-hydroxylation followed by O-acetylation by the N-acetyltransferases NAT1 and NAT2. Despite the importance of metabolic activation in HCA carcinogenicity and the finding that several HCAs are rodent mammary gland carcinogens, nothing was known about O-acetylation activity in the human mam...
متن کاملFunctional effects of CYP1A2, NAT1, and NAT2 genetic variants in nucleotide excision repair-deficient human fibroblasts : implications for toxicological risk from environmental arylamines
FUNCTIONAL EFFECTS OF CYP1A2, NAT1, AND NAT2 GENETIC VARIANTS IN NUCLEOTIDE EXCISION REPAIR DEFECIENT HUMAN FIBROBLASTS: IMPLICATIONS FOR TOXICOLOGICAL RISK FROM ENVIRONMENTAL ARYLAMINES Carmine S. Leggett August6,2010 Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the detoxification and/or activation of aromatic and heterocyclic amine carCinogens by two pathways. This metabolism ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 55 16 شماره
صفحات -
تاریخ انتشار 1995